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A B S T R A C T

Research shows that political and criminal violence cluster spatially but neglects the wide range of mechanisms
driving contagion and, more importantly, the role of counter-contagion efforts. After identifying permissive
conditions for piracy, I hypothesize that piracy clusters in locations conducive to successful attacks. Pirates
engage in risk-reducing behaviour: they return to areas where they have been previously successful but also
adapt this learning-based decision to constraints imposed by EU counter-piracy. The analysis relies on uniquely
detailed data on piracy and counter-piracy in monthly grid-cells off Somalia (2005–2013). Results show that
although successful attacks foster more attacks and contagion, EU counter-piracy reduces contagion. Even within
most successful locations, rescue operations reduce incidence of piracy by 89% in the following month. The
article contributes to existing contagion/diffusion literature by identifying specific channels of contagion
(contiguity and learning) and by factoring in containment policies that can limit and reduce criminal and po-
litical violence.

Introduction

Contagiousness is a feature of many social and political phenomena,
including conflict, terrorism, protests and crime. Research on violence
finds that not only violence clusters in space but it also spreads geo-
graphically. Whether this occurs as effect of contiguity, competition,
learning, emulation or other diffusion mechanisms is less commonly
investigated. Among several typologies of organized crimes, maritime
piracy has emerged as a global threat to international security. Piracy
incidents are reported all over the world, from South-East Asia and
Indian Ocean to Latin America and Caribbean. Yet the distribution of
piracy incidents appears to exhibit geographical concentration; indeed,
a map of incidents easily identifies hotspots of pirates' activity.
Recognizing the presence of crime hotspots, however, does not indicate
diffusion or contagion per se and cannot explain why spatial clustering
emerges. Research has shown that piracy clusters not only in space but
also in time (Marchione & Johnson, 2013), thus pointing towards not
just clustering but actual contagion processes.1 However, two question
still stands, namely (1) under which conditions piracy diffuses and (2)
whether military intervention is apt to contain contagion.

As first contribution, I provide answers to these questions showing
that pirates return to location they are familiar with and move around

their proximity. This is what I call contagion by reinforcement and
contiguity. In addition to this, pirates assess likelihood of success based
on previous achievements. This is the third contagion mechanism,
which works through learning. A counter-piracy force, however, may
limit the geographical diffusion of criminal activities by threatening to
or actually imposing costs on criminals. More precisely, deterrence and
compellence counter not only piracy occurrence but also its contagion.
The inclusion of contagion inhibitors is the second distinctive con-
tribution of the manuscript and improves the comprehensiveness of the
contagion mechanisms under investigation. I use unique data on
counter-piracy that matches when, where and which incidents resulted
in a response from the EU Navy operation (EUNAVFOR) and how pi-
rates subsequently adjusted to this. Focusing on the Somali case, this
manuscript argues that pirates' strategic behaviour helps explaining the
spatial pattern of attacks and possible contagion. My argument implies
that pirates' decision-making is strategic and dependent on their pre-
vious history of attacks and assessments of success. Third, the manu-
script contributes to the existing literature on spatial contagion by
taking advantage of studying contagion and counter-contagion dy-
namics in an environment with few confounders. On-land phenomena
may pose more challenges as they are the result of social interactions
and micro dynamics that are more difficult to capture. Thus, it is more
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straightforward to account for few confounders at sea and explore
whether other factors (e.g. learning) have strategic value in decision-
making of criminal actors. Therefore, the findings presented here pro-
vide further evidence that strategic decisions by violent and criminal
actors lead to spread of their activities. This is not the first attempt to
detect contagion of piracy (see Marchione & Johnson, 2013), but it is
the first one conceptualizing contagion as a process and thus proposing
explanations for why we see contagion as an outcome (Elkins &
Simmons, 2005).

The manuscript is organized as follows. First, I summarize the main
scholarly contributions on spatial contagion, particularly in the study of
violence and crime. In the theoretical section, I argue that attacks by
pirates are not completely random and that some locations are poten-
tially preferred not only because of location-specific risk factors (e.g.
distance from coast or weather conditions), but also because of pirates'
experience of successes and disruptions by EUNAVFOR counter-piracy
in that location. To test these hypotheses, I propose a statistical analysis
of piracy and counter-piracy efforts in Somalia from 2005 to 2013.
Results corroborate contagiousness of piracy as predicted by the re-
inforcement, contiguity and learning hypotheses on contagion.
Additionally, I find that the deployment of the EU mission has overall
curbed the incidence of piracy off Somalia in recent years (deterrence)
and that pirates avoid areas where EUNAVFOR disrupted their attacks
(compellence), though this effect only lasts one month. The conclusion
discusses the relevance of piracy for understanding the contagion of
violence and (transnational organized) crime and how identifying dif-
ferent mechanisms of contagion or diffusion should lead to different
policy interventions.

Spatial diffusion and contagion of violence and crime

Early political science studies on diffusion paid particular attention
to the spread of violence. Starr and Most (1985) indicate reinforcement
and diffusion as possible processes through which war spreads across
countries. Intuitively, they argue that countries are at greater risk of
war if they have experienced war in the past or are proximate to other
countries at war. Braithwaite and Li (2007) also finds that countries
located in terrorist hotspots are more likely to experience terrorist at-
tacks in the immediate future.

The connections among countries may be defined by different cri-
teria, one of which is geographic proximity. Contiguity provides the
opportunity for inter-state interactions, which facilitate the diffusion of
violence across countries (Braithwaite, 2006; Lake & Rothchild, 1998).
While proximity plays a role in the diffusion of phenomena or adoption
of policies, it is not the only channel (Braithwaite, 2010; Buhaug &
Gleditsch, 2008; Zhukov, 2012). Alliances, shared membership in IGO,
intergovernmental ties, migration flows and even civilization lines are
alternative channels through which phenomena, as infections, spread
faster than proximity would predict (Bove & Böhmelt, 2016; Most &
Starr, 1989; Neumayer & Plümper, 2010; Zhukov & Stewart, 2013). For
example, Midlarsky, Crenshaw, and Yoshida (1980) argue that the risk
terrorism contagion depends on the diplomatic status of the country
where terrorism occurs since status indicates a degree of “imitability”.
Indeed, non-state actors e.g. terrorists and criminals, observe how other
groups and the results of such actions; according to what they see, they
decide whether to adopt the tactic or not (Elkins & Simmons, 2005).
Observing who adopts a strategy and its outcome implies a learning
process. Learning, in opposition to mimicry, emulation and imitation,
involves a rationalist adoption of a practice based on its observed
consequences and consistency with one's own objectives.2 Also, like-
lihood of adopting a tactic such as suicide terrorism largely depends on
the capability of a group to do so (Horowitz, 2010). Notably, however,
while for military strategies like suicide bombings capability is a

significant constraints, pirates do not incur in major costs when de-
ciding to move to locations where attacks are more successful.

Insurgents and terrorists are not the only non-state actors whose
activities diffuse via contagion and learning. Crime is as infectious as
violence and terrorism (Cohen & Tita, 1999; Ye & Wu, 2011). Crimin-
ology has developed its own theoretical framework to explain the
spatial distribution of crimes which distinguishes two mechanisms,
namely flag and boost effects (Pease, 1998). Some victims “advertise
their vulnerability” (Johnson & Bowers, 2004, p. 12), for example, a
house with poor lighting is a potential target for any burglar. This
heterogeneity in risk is at the core of the flag effect. The second me-
chanism driving crime diffusion is the boost effect, namely the tendency
of offenders to learn from their previous crimes and use this informa-
tion to choose future targets. Burglars are likely to return to previously
robbed houses because they have knowledge of the environment and
consequently may feel confident to operate more efficiently.

Political Science and Criminology have used different terms and
methods to explore similar mechanisms behind patterns of diffusion. As
argued below, compared to Criminology, the so-called Galton's Problem
of distinguishing risk heterogeneity from spatial interdependence
(Galton, 1889) is more explicitly addressed in the violence and ter-
rorism literature, both theoretically and methodologically. Conversely,
research on crime contagion identifies hotspots without distinguishing
whether these result from spatial distribution of crime-prone features
(i.e. common exposure3) or actual contagion of crime. As Buhaug and
Gleditsch (2008) pointed out, hotspots of conflicts may also be the re-
sult of countries' individual characteristics that cluster in space, rather
than a neighbourhood effect. This clustering could emerge not as con-
sequence of interdependence among units but more as consequence of
Tobler's first law of geography according to which closer things are
more similar than distant things (Tobler, 1970).

This distinction between spatial interdependence and spatial hetero-
geneity or common exposure (Franzese & Hayes, 2008) is crucial as it
has theoretical and methodological implications. First of all, arguing
that the geographical clustering of conflict is only the result of the
distribution of countries' features supports the conclusion that, for ex-
ample, terrorism in neighbouring countries is not a threat for other
states. Second, if there is an actual neighbourhood effect (diffusion or
contagion), non-independence of observations is a problem for statis-
tical inference. This manuscript acknowledges these issues and connects
the Criminology and Political Science literature using piracy as instance
of transnational violent crime to pin down contagion and counter-
contagion mechanisms underlying the geography of piracy.

Risk factors of maritime Piracy in Somalia

Identifying factors that affect the occurrence of piracy is important
for separating contagion (spatial interdependence) from common ex-
posure (clustering of risk factors). The literature on the occurrence of
piracy adopts an aggregated perspective and identifies three classes of
risk factors.

First, states' institutional capacity affects the intensity of piracy
activities within states' territorial waters. Scholars have argued for a
non-linear relationship, with weak states being more likely to be af-
fected by endemic piracy than failed states (Groot et al., 2011; Hastings,
2009). More sophisticated typologies of piracy require some degree of
governance and are threatened by instability caused by violent conflicts
and anarchy (Shortland & Percy, 2013). Daxecker and Prins (2013)

2 For a discussion of differences, see Maggetti & Gilardi, 2015.

3 In the manuscript, the term common exposure is borrowed from Franzese
and Hayes to indicate “similar exogenous internal/domestic or external/foreign
stimulus” (2008:4). In the same vein, common exposure is implied in Buhaug
and Gleditsch (2008:215) when the authors mention “similar distribution of
relevant country characteristics” associated with the emergence of the phe-
nomenon of interest.
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qualified this finding specifying that the non-linearity holds only for
extreme, rare cases of state fragility.

Second, economic conditions affect the cost-opportunity for in-
dividuals deciding to join the piracy business. These economic condi-
tions include both the availability of opportunities in the fishery sector
and, more generally, macro fluctuation of capital-intensive and labour-
intensive commodities (Daxecker & Prins, 2013; Jablonski & Oliver,
2012). Finally and intuitively, geographical and meteorological cir-
cumstances affect the risk of piracy. The seasonality of adverse weather
conditions suggests that also piracy has seasonal variation particularly
in Somalia, where summer and winter monsoons make waters ex-
tremely rough and dangerous (Hansen, 2009; Percy & Shortland, 2013).
Among geographical factors, proximity to the coast (access to safe ha-
vens) and chokepoints are additional favourable conditions (Chalk &
Hansen, 2012).

Differently from existing work, this manuscript makes an additional
step and focuses on factors affecting pirates' decision-making instead of
aggregate patterns of piracy. While I recognize and account for the
importance of aggregate-level factors, I aim at exploring more localized
manifestations of the phenomenon and the precise location of each
single attack. Using sea locations as observation unit also allows to
isolate more convincingly the role of experience and learning from
land-based features associated with piracy. While conflict violence can
explain why pirates select certain areas as safe havens, the effect of
conflict on crimes perpetrated at sea should be less and less important
as pirates move away from shores.

Alongside these aggregate factors, the first decision for pirates in-
volves selecting the location where they want to search for targets. This
decision is based on a set of characteristics broadly defined as con-
textual. Contextual features describe the risk of operating in a location.
For pirates, location matters more than targets' features since targets
are not fixed. While burglars can select a house and repeatedly victi-
mize it, pirates rarely attack the same ship. This does not imply that
pirates do not select targets at all, but before assessing how easy it
would be to board the ship that is sailing in front of them (e.g. does it
have ladders?), pirates have to decide which areas to scout (Hansen,
2009). Pirates hold beliefs on the feasibility of attacks in several loca-
tions, and these beliefs are partly based on their previous experience.
Assessment on vessels' level of security is contingent on whether one is
ever spotted. It is not surprising, then, that pirates often operate in the
same areas, as Fig. 1 shows for the Somali case. Most incidents attrib-
uted to Somali pirates occur in specific areas rather than being scattered
throughout the Western Indian Ocean. Fig. 1 also illustrates that the
Gulf of Aden is not the only dangerous area for vessels. Of course the
chokepoint at Bab-el Mandeb forces ships to travel along a limited area,
thus making pirates more likely to hit nearby locations and, conse-
quently, hotspots more likely to emerge (Chalk, 2009; Coggins, 2012;
Shortland, 2015). However, not only the density of attacks extends well
beyond the Gulf's entrance, but also areas in the larger Somali Basin
experience intense piracy activity. This pushes for further investigation
since clustering is not simply explained by favourable geography and
may be the result of strategic choices made by pirates.

To summarize, quality of governance, economic opportunities,
geography and weather reveal something about the aggregate risk of
piracy but fail to explore the contagion of piracy. Some areas are more
vulnerable than others, but high risk does not imply interdependence of
events occurring in nearby units. The explanations in the literature are
best conceived as permissive conditions that precede incidents, but
there are also consequences of incidents that affect future (and nearby)
events (Morenoff, Sampson, Raudenbush, 2001: 523). These con-
sequences embed event-dependency and are the focus of the mechan-
isms driving the contagion of piracy.

Piracy is not so different from car theft or burglary: it is also an
acquisitive crime, but with transnational and organized characteristics

(UNODC, 2010). Whether it involves robbing, hijacking or kidnapping,
pirates engage in an illicit behaviour aimed at acquiring money or
valuables from a victim (Rosenfeld and Messner, 2013). As with other
classes of crime, spatial analyses of piracy find clear evidence of reg-
ularities in the location of incidents (Marchione & Johnson, 2013).

Why should we expect piracy to be contagious? A common strategy
for Somali pirates is to select a geographical area and launch several
attacks within a short period of time (Hansen, 2009). These boosts in
piracy incidents begin in areas known to pirates, their “hunting
grounds” (Hansen, 2009, p. 22; Bahadur, 2011, p. 141; De Wijk,
Anderson, and Haines, 2010). The campaigns may have varying dura-
tion, but if this tactic is common to all pirates' groups in Somalia, a
pattern of spatially and temporally interdependent incidents should
emerge. As described by Hansen (2009:22):

The pirates began to initiate pirating campaigns, a multitude of attacks
within a short time span often in a limited geographical sectors […]
scouting and selecting opportune targets within their “hunting grounds”,
and returning to their bases when they ran out of supplies and patience.

Contrary to what is commonly thought about pirates selecting tar-
gets in advance, attacks are more based on patrolling instead of in-
tentionally pursuing specific vessels (Hansen, 2009). Roger Middelton,
Chatham House expert, paralleled piracy to “walking down the street,
looking through windows: you see one that has a single glazing so you
smash the window, go in and steal the TV” (Bahadur, 2011, p. 54).
Patrolling, however, does not mean that pirates wander at sea waiting
for vessels to find them. Instead, those anecdotes suggest, pirates patrol
specific location based on what they have learnt from previous cam-
paigns. Hence, acting as rational hunters, pirates attempt to maximize
profit with the least effort, namely by reducing travelling time and
increasing the likelihood of success. One of the factors explaining the
return of pirates is familiarity and knowledge of the environment. More
knowledge and familiarity increases the likelihood that pirates will
return to the same locations and its surroundings as this information is
used to reduce uncertainty and increase expectations of success. This
strategic calculus should result in patterns of reinforcement (i.e. return
to same location) and spatial contagion to nearby locations. Conse-
quently, the following hypotheses are formulated:

H1a. The intensity of piracy in a location is positively associated to incidents
in the previous month (contagion by reinforcement).

H1b. The intensity of piracy in a location is positively associated to previous
incidents in neighbouring locations (contagion by contiguity).

In addition to reinforcement and contiguity, pirates can use in-
formation from the outcomes of previous attacks to inform future se-
lection of locations. This mechanism implies learning from experience.
As in a Bayesian learning process, actors accumulate new information
consistent with a previously hypothesized relationship. As in the case of
burglars, if offenders assess a high rate of success in a given area, then
they are more likely to return. Information about previous successes is
immediately available to the pirates that actually carried out attacks.
Besides within-group learning, other groups could gather the same in-
formation and learn by observing other groups. If these groups succeed,
observers are encouraged to adopt the same behaviour, in this case
increasing piracy activity in proximity of locations with higher rates of
success. There is evidence of links among pirate groups, supporting the
hypothesis that they might learn from each other's practices. Piracy
networks are fluid; some overlap and occasionally cooperate
(Monitoring Group on Somalia, 2008). The two main pirates networks
of Somalia, namely the Puntland and the Hobyo-Hardheere networks,
have collaborated since 2005 and some senior pirates also travelled
around Somalia as instructors and head-hunters (Eichstaedt, 2010;
Hansen, 2009). Cooperation and overlapping membership favour the
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flow of information among groups and support the hypothesis that pi-
rates learn not only from their own experience but also observing other
groups' successes.4

The tacit coordination among pirate groups also explains why suc-
cess would not lead to competition and thus dispersion rather than

concentration of attacks. As groups learn about each others' successes,
we could expect that more groups will end up operating in the same
area; competition over scarce resources may drive to two possible
scenarios. One, pirate groups will fight over specific areas. The co-
ordination mechanisms mentioned above reduce competition and are
often enforced by clan elders (Hansen, 2009). For example, pirates are
forbidden to re-hijacked released vessels on their way off Somalia
(Shortland & Varese, 2016). More likely, pirate groups will operate in
those locations that are just proximate to those known to be successful,
both to avoid frictions with other groups and to avoid attracting EU

Fig. 1. Kernel density of attacks from 2005 to 2013. Spatial patterns of piracy in Somalia.

4 Unfortunately, distinguishing between contagion driven by learning from
one's own experience from observational learning (Bandura, 1973) is impossible
with existing piracy data. Such data does not identify piracy groups and/or
networks carrying out attacks.
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navy attention by overcrowding shipping lanes with pirates skiffs. So
pirates will prefer operating in nearby areas (thus contagion will occur)
and not precisely in the same exact area where successful attacks oc-
curred.

Both within- and between-group learning are relevant and expected
to have the same effect on piracy incidence. I propose the following
hypothesis on learning:

H1c. The intensity of piracy in a location is positively associated with rates
of success in the same location and its surroundings (contagion by learning)

If Hypotheses 1a, 1b and 1c find empirical support, it can be argued
that location and timing of piracy attacks are strategically selected in-
stead of being opportunistic and completely unplanned. All three hy-
potheses outline decision mechanisms that explain different parts of the
spatio-temporal clustering of piracy incidents found in the literature. As
will be clarified in the operationalization of the variables, the crucial
difference between H1b and H1c is that the former explains contagion
as result of geographical proximity, while the latter focuses on rational
evaluation of previous attacks and success rates in each location.

Another important clarification concerns the null hypothesis. If
there are several factors that explain clustering besides learning, con-
tiguity, and reinforcement, we would see clustering even if no con-
tagion is occurring. This point relates, again, to the fundamental
Galton's Problem. If clustering of piracy is still present after controlling
for risk factors that are similar in nearby units (e.g. distance from land),
there is likely an interdependent data generating process that needs to
be modelled. Hence, the main null hypothesis here is “no spatial in-
terdependence” rather than “no clustering”, which could still be present
in absence of contagion. Indeed, even in absence of interdependence
and contagion, we may still observe clustering but what occurs in each
unit is independent and does not affect others.

Countering contagion: counter-piracy in Somalia

Contagion is not only instigated by what others do but can also be
“inhibited by the information [units] receive through time about one
another's behaviour and its consequences” (Pitcher, L Hamblin, &
Miller, 1978). Hence, while some factors are expected to favour the
contagion of piracy (i.e. rate of success in close locations), there are also
factors that inhibit and contain contagion. One important factor that
has potentially inhibited pirates' activity and altered their modus oper-
andi off Somalia is the European Union Naval Force Atalanta (EUNA-
VFOR). EUNAVFOR was established in late 2008 to reduce the in-
cidence and contagion of maritime piracy in the Gulf of Aden and the
Somali basin. The deployment of warships from European countries has
been extended until December 2018 with the objective of protecting
vulnerable vessels (especially those carrying food aid), deterring and
disrupting piracy and monitoring fishing to support international or-
ganization which are building maritime security and capacity in the
area (EUNAVFOR webpage).

The presence of warships is expected to have a decreasing effect on
piracy. I distinguish between deterrence and compellence effects.
Deterrence occurs when an actor is discouraged to initiate an action
because he or she fears the threat of retaliation; compellence describes a
situation where the cost-benefit calculation of action is altered after the
cost has been imposed (Schelling, 1966). I argue that EUNAVFOR de-
ployment has both a deterrence effect (overall reduction of attacks
following the deployment of warships) and a compellence effect (re-
duction of risk of attacks in location where the navy has imposed costs
on pirates by disrupting attacks). In line with this, hypotheses on con-
tagion inhibitors are:

H2a. EUNAVFOR patrolling in the Indian Ocean has decreased the risk of
piracy attacks (deterrence)

H2b. Rescue intervention reduces the risk of piracy in the same location and
its nearby (compellence)

Analysis: data and method

The availability of spatially and temporarily disaggregated data on
incidents allows for an empirical analysis of micro-level theories of
violent actors' behaviour. In order to test the hypotheses on how pirates
select locations to perpetrate attacks, I use a time-series cross-sectional
dataset with grid cells-month as unit of analysis. Particularly for the
Somali case, most events do not occur in ports but at high sea. This
introduces the problem of defining what a “location” is at sea since
there is no natural or administrative boundary separating different
areas. The spatial unit I refer to with the term “location” is a cell from
the PRIO-GRID (Tollefsen, Forø, Strand, & Buhaug, 2012). The PRIO-
GRID consists of 0.5× 0.5 decimal degrees cells and covers the mar-
itime areas where Somali pirates attack vessels. This includes the So-
mali coast, the Gulf of Aden and the Somali basin (see Fig. 1). The data
include 2964 cells observed monthly from 2005 to 2013, for a total of
320,112 observations. I use months as the temporal unit in order to
better identify contagion processes and immediate effects of counter-
piracy. About 10% of the cells (397) experienced at least one attack in
the period under consideration. I use a dataset on maritime piracy
(Maritime Piracy Event & Location Database, MPELD, Daxecker, Prins,
& Salvatore, 2018), which collects information on attacks combining
reporting from International Maritime Bureau (IMB), Anti-Shipping
Activity Messages (ASAM) and International Maritime Organization
(IMO). While reporting of attacks in the 1990s was geographically
unprecise, reporting significantly improved in 2000s. Only 6 out of
almost 1300 incidents off Somalia from 2005 to 2013 have no clear
geographical reference, thus were excluded. Duplicates of incidents
reported in both sources were also removed. The analysis includes ac-
tual and attempted attacks since the main research question focuses on
pirates' strategic selection of favourable environments, rather than ex-
planations of success. Incidents are self-reported by crew or ship
owners; however incentives for reporting attacks are likely independent
from where they occur, thus should not substantially alter geographical
patterns. The dependent variable is the monthly number of piracy in-
cidents in each cell.

I first present a logistic regression that estimates the effect of con-
textual risk factors (stability, economic conditions, geographical fea-
tures, and weather patterns). The logit model sets the baseline risk
based uniquely on cells' features, thus the model excludes spatial
variables. The count models build on this baseline. They only include
variables that were significant in the logit model with the addition of
the contagion-related covariates. More specifically, I test hypotheses 1a,
1b and 1c on contagion by reinforcement, contiguity and learning using
a zero-inflated negative binomial (ZINB) to model the intensity of pi-
racy. Hypotheses 2a and 2b on counterpiracy are examined thereafter.
H2a focuses on deterrence effect in the aftermath of EUNAVFOR de-
ployment. To test the compellence in hypothesis 2b, I examine the ef-
fect of EUNAVFOR actual intervention against pirates to rescue vessels
rather than EUNAVFOR's mere presence. Since rescuing operations and
intensity of piracy are endogenous, I perform a seemingly unrelated
estimation (SUR) that allows me to combine a ZINB and logistic re-
gression to test hypothesis H2b.

Main independent variables

Reinforcement, contagion and learning
To measure reinforcement, I use the temporal lag of the dependent

variable to test the hypothesis that number of incidents in the previous
month has a positive effect on the likelihood of future ones within the same
unit. Second, contagion requires that what occurred in a proximate unit j at
time t-1 has an effect on the nearby unit i at time t. Consequently, I cal-
culate the spatial lag of incidents occurring in neighbouring units and also
include its time lag. The neighbourhood of a cell is defined by the eight
contiguous grid cells sharing a border or vertex with the cell. This is called
a queen matrix of order 1, which means contagion can occur from one cell
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to any of the eight cells immediately adjacent to it. Third, the learning
mechanism implies that pirates will operate again around areas where
they carried out mostly successful attacks. For example, if most attacks
near the Gulf of Aden were successful, it is more likely that pirates will
operate there in the future. I measure the rate of success for each cell in the
previous month as a simple proportion of actual attacks over the total
number of incidents in the cell in the previous month. I also calculate the
spatial lag of success to assess whether there is an increase in attacks
nearby successful locations.5

Deterrence and compellence
Information on the location of EUNAVFOR Atalanta mission ships is

not publicly available. It is known, however, that locations where EU
ships intervened were scattered across the Somali basin as shown in
Fig. 2, suggesting that no matter where originally deployed, ships were
able to intervene in the whole area under analysis, though not always
promptly as some unsuccessful rescues indicate. The support of air patrols
and drones surveillance along the coast improved the mission's capacity
to operate in this vast region. Importantly, pirates are not informed about
where EUNAVFOR ships are located at different times, so they cannot
purposely avoid specific areas based on the expectations that warships
will be patrolling. To measure deterrence, I thus add a dummy variable
for the EUNAVFOR Atalanta deployment that takes value of 1 for all grids
after 2008. To avoid conflating Atalanta with the introduction of Best
Management Practices and private security on board, I control for these
two factors separately (see below on control variables).

The compellence mechanism suggests that locations where pirates
have previously confronted EUNAVFOR ships are less likely to be se-
lected for subsequent attacks. The EUNAVFOR website provides data on
the rescue of vessels, but the location of the operation is vague and
refers only to Gulf of Aden or Somali basin. In order to identify cells
where the mission intervened to disrupt an ongoing attack, I cross the
information reported by the EUNAVFOR on the exact date and type of
rescued vessels with MPELD data. Using the exact date and type of
vessel, I can match incidents with rescues and accordingly locate
EUNAVFOR interventions.6 I account for pirates' strategic adaptation
after confrontation with EU warships by including a time-lagged
dummy for grids where the EU intervened to rescue a vessel. Linking
incidents to rescue is crucial for testing EUNAVFOR effectiveness.
Jablonski and Oliver (2013) operationalize this variable as a count of
patrolling vessels, but they cannot actually locate their activities. They
find no effect for this variable, but since incidents are not linked to
international counter-piracy efforts it is problematic to completely rule
out any effect. In fact, Jablonski and Oliver mention that a local de-
terrent effect can be at place, which is also consistent with the findings
in Shortland and Vothknecht (2011). Such local effect can only be ob-
served with disaggregated data that previous studies lacked.

As a summary, Table 1 reviews hypotheses and operationalizations.

Control variables
Most of the control variables are calculated and assigned to each cell

using ArcGIS. I proxy institutional capacity (strength of local govern-
ance and the degree of instability) with the number of monthly killings
along Somali coast reported in the Armed Conflict Location and Event
Data project (ACLED, Raleigh, Linke, Hegre, & Karlsen, 2010).7 I expect

that both very stable and very unstable territories are associated with
fewer pirate attacks close to the coast, as posited by the institutional
capacity argument. I include a square term for this inverse-U relation-
ship. Non-linear effects are also expected for measures of distance from
ports and density of shipping traffic. Pirates will attack more often in
areas where many vessels transit, yet too high density may be a problem
as the crew may call for close ships' help. Distance from ports should
also have a non-linear effect. Since pirates try to maximize gain and
reduce effort, travelling too far is not ideal. Yet, vessels actively avoid
the Somali coast. Consequently, pirates are forced to move a bit further
while still preferring to be as close as possible to land. Squared distance
from ports and density of traffic are included to account for these non-
linearities. Distance from ports is calculated with ArcGIS while data on
shipping density are from the European Commission Maritime Forum
yet, unfortunately, available only for 2010.8 Because of this limitation,
traffic density is included in the ZINB inflation stage because locations
without transit will never experience piracy. Assigning a low prob-
ability of attack to locations with low traffic is the best way to make use
of available information on sailing vessels. I also include a dummy for
cells within 200 nautical miles from the Bab-el-Mandeb chokepoint and
a dummy for monsoon seasons (South-West monsoon in summer and
North-East in winter). To show that piracy is also a function of labour
opportunities, I interact the monsoon season with a dummy for the Gulf
of Aden; more specifically, the growth in fishing production brought by
the summer monsoon in the Somali Basin should reduce piracy in this
area but less pronouncedly in the Gulf of Aden. Finally, the introduction
of Best Management Practices (BMP) document in 2009 and on-board
private security can also be argued to have had an impact on the in-
tensity of piracy off Somalia. I use EUNAVFOR data to calculate the
time lagged number of rescued vessels that implemented BMP and the
number of vessels with private security on board for each cell-month.

Estimation and results

Before focusing on the ZINB model, Model 1 in Table 2 reports the
logit model including only the control variables and the time lag of the
dependent variable. This model identifies the baseline risk of experi-
encing one attack in a grid cell-month. Most variables behave as hy-
pothesized. Shipping density is associated positively with incident oc-
currence; hence the likelihood of piracy is higher where there are more
potential targets available. Increasing distance from ports reduces the
odds of attacks. The square term for traffic density and distance,
however, is not significant. Being in proximity of the Bab el-Mandeb
strait is also very risky for vessels as it is easier for pirates to identify
target, attack and then quickly escape to the coast. Higher density of
traffic in these areas also allows pirates to choose more vulnerable
targets. Meteorological conditions also affect the risk of attacks, though
only the South-Western monsoon curbs piracy, while the winter mon-
soon has no significant impact. Because of its intensity and high tem-
perature, coastal communities benefit from the summer monsoon; its
upwelling increases the presence of sea nutrient and makes fishing
more attractive than going out at high sea to rob or hijack vessels
(Wiebinga, W Veldhuis, & W De Baar, 1997). The interaction term
between summer monsoon and the Aden region shows that risk of in-
cidents is lower during the summer monsoon but this effect is more
moderate in the Gulf of Aden. Here the increased marine productivity is
half than in the Somali basin so, as consequence, fishery does not suf-
ficiently substitute for piracy nor it increases the opportunity cost of
using boats for piracy instead of fishery. Hence, few attacks still occur.
Finally, the number of battle-related deaths along Somali coasts mea-
sures the degree of instability and local governance. According to the
results, instability but not complete chaos provides advantages for illicit
activities such as piracy. The baseline model confirms that quality of

5 Notice that attacks are defined as attempted or successful in the IMB, ASAM
and IMO reports depending on whether pirates managed to either board or
hijack a vessel.
6 For example, EUNAFOR reports four rescued vessels on 01/01/2011,

namely two tugs, a chemical tanker, an oil tanker. Similarly, MPELD records
five incidents on the same date, four of which involving exactly the same type
of vessels. A fifth vessel is reported as hijacked by MPELD and, consistently, is
recorded as pirated in the EUNAVFOR.
7 This includes all casualties reported in ACLED within coastal Somali second

order administrative units (Global Administrative Units http://www.gadm.org). 8 Available here: https://webgate.ec.europa.eu/maritimeforum/en/node/1473.
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governance, economic opportunities, weather and geographic factors
affect the location of attacks not only at the state level.

The logit model neglects the contagion mechanisms and does not

disentangle simple geographic clustering from actual contagion. It also
does not account for how many times locations experience piracy. As
main model, I estimate a ZINB to explore channels of contagion. There

Fig. 2. Piracy incidents and EUNAVFOR intervention from December 2008 to 2013.

Table 1
Summary of mechanisms and measurements.

HYPOTHESES Mechanism Operationalization

H1: Contagion (a) by Reinforcement:
More incidents after one occurred in the same location i at t-1

−DVt 1

(b) by Contiguity:
More incidents after one occurred in neighbouring locations j at t and t-1

∗W DVt
j

∗
−

W DVt
j

1

(c) by Learning:
More incidents if the location or nearby have high rate of successful attacks

−
( )Successful Attacks

Total Attacks t

i

1
∗

−
( )W Successful Attacks

Total Attacks t

j

1
H2: Inhibitors of Contagion (a) Deterrence:

Less risk of incidents after EUNAVFOR deployment
Dummy Atalanta

(b) Compellence:
Less risk of incidents after confrontation with EUNAVFOR

Dummy Rescue t-1 within cell
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are locations with very low or even zero chances of attacks, for example
if vessels never cross that cell. Now, what explains immunity from pi-
racy is likely different what explains concentration of piracy. The ZINB
models these two processes separately,9 differently from count models
such as negative binomial (NB). For comparison, I report also the results
from a NB model in Table 2 (Model 2); all key statistics (AIC, BIC and
Vuong test) suggest that the ZINB model perform significantly better
than the NB, although the point estimates are not very different. My
decision to select the ZINB model relies on both statistical and theo-
retical reasons. First, I believe that shipping density affects both in-
tensity and probability that an incident will ever occur in a location.
This is effectively modelled by the ZINB. Second, the seemingly small

differences between NB and ZINB (which nonetheless are statistically
important in terms of goodness-of-fit) do tell us something about the
proposed theory of piracy contagion, namely that locations with high
number of attacks do not have specific features that differentiate them
from locations with extremely low risk.

ZINB estimates are shown in Model 3 (Table 2). The covariate for
the inflation equation is shipping density: locations where vessels never
transit are expected to be less (if never) targeted. Also, mechanisms of
contagion by reinforcement, contiguity and learning are tested in this
model. The increase in expected count of incidents after at least one
occurred in the previous month is indicative of a reinforcement process.
The intensity of attacks increases 211% when an attack already oc-
curred in the same location (Table 3). If the attack occurred in sur-
rounding locations, the intensity is heightened by 152%, meaning the
number of attacks more than doubles. The significance of the spatial lag
and the non-significance of the spatio-temporal lag suggest that this
neighbourhood effect occurs in the short run, namely within the same
month. Incidents that occurred in the surroundings are not affecting the
intensity of piracy in the following months. This is likely the result of
short campaigns often carried out by Somali pirates that generate
chains of attacks close in space within a short period. Near-repeat
analysis discussed below confirms this interpretation.

A third contagion mechanism suggests that pirates learn for
previous attacks and return to locations where more successful at-
tacks were carried out. The model supports this explanation, as the
positive and significant coefficients for the learning variables show.
A 10% increase in the rate of success results in 9% more incidents in
that unit and, more importantly, 62% more in the surrounding lo-
cations. The control variables retain significance and direction as
estimated in the logit and NB models, except for density, which is
only significant in the inflation equation. As expected, less trafficked
areas are important predictors of no incidents, meaning they are not
selected by pirates.10

Fig. 3 plots the probability of an attack after one has occurred in
nearby cells, as estimated by the ZINB. The likelihood of attacks in-
creases as more incidents occur in the surrounding units, regardless of
whether the cell has already experienced an attack in the previous time
period. The risk of piracy is higher when both surrounding units and the
location itself were targeted previously (solid line, approximately 3%)
but is halved when only neighbouring cells have been previously at-
tacked (dashed line, approximately 1.5%). This suggests that piracy
both spreads to new locations and re-occur in those that already ex-
perienced it. Predicted probabilities in Fig. 4 refer to similar scenarios
where pirates have successfully carried out attacks in neighbouring
units in the previous month. Again, the likelihood of piracy increases as
success rate grows, and doubles when an incident occurred in the
previous month too. Note that the highest success rate is 0.75, hence the
difference between the two lines is significant for most observed var-
iation in the sample.

I explore the finding on the short-term versus long-term contagion
by contiguity further by moving to a higher level of temporal dis-
aggregation, namely daily variation in attacks. Near-repeats analysis
can be used to identify daily patterns of contagion. Near-repeats are
events that occur close in time and space in a non-random way. Full
results are not included to preserve space (results available upon re-
quest), there is a clear pattern of near-repeats with the first piracy at-
tack being followed by a rapid increase of risk in nearby cells for a short
temporal span.11 Indeed, after several attacks the risk of getting caught
is higher because vessels might have alerted authorities so the cam-
paign has to stop. It follows that pirates can carry out multiple attacks
in close areas for a short period; they will then have to either move
away or retreat. Fig. 5 maps the location of near-repeats. The longest

Table 2
Logit and count models for piracy contagion.

Model 1 Model 2 Model 3

Logit NB ZINB Main Model

NB Inflation

Reinforcement 2.751*** 1.257*** 1.135***
(0.184) (0.348) (0.333)

Contiguity ( −t 1) 0.143 0.110
(0.125) (0.118)

Contiguity 0.993*** 0.928***
(0.121) (0.114)

Rate of Success ( −t 1)
(Space lag)

4.856*** 4.790***
(1.411) (1.358)

Rate of Success ( −t 1) 0.882** 0.905**
(0.396) (0.356)

Density 0.054*** 0.037*** 0.004 −1.715***
(0.017) (0.009) (0.014) (0.433)

Density (sq) −0.001 −0.0004 −0.0001
(0.001) (0.0003) (0.0001)

Distance ports −0.07** −0.039 −0.037
(0.034) (0.034) (0.034)

Distance ports (sq) −0.003 −0.004** −0.005**
(0.002) (0.002) (0.002)

Chokepoint 1.185*** 0.843*** 0.771***
(0.215) (0.197) (0.213)

Summer monsoon −1.160*** −0.593*** −0.592***
(0.180) (0.112) (0.112)

Winter monsoon −0.036
(0.1)

Gulf of Aden −0.540***
(0.199)

Summer monsoon*Aden 1.031***
(0.228)

Winter monsoon*Aden 0.076
(0.139)

Killed ( −t 1) 3.691*** 2.808*** 2.821***
(0.531) (0.692) (0.674)

Killed ( −t 1) (sq) −1.781*** −1.343*** −1.349***
(0.264) (0.343) (0.335)

Constant −6.938*** −6.875*** −6.171*** 0.479**
(0.327) (0.322) (0.320) (0.241)

Observations 320,112 320,112 320,112
LnAlpha 1.797*** 1.514***
Vuong Statistics 4.75***
10,720
10,891
AIC 10,816
BIC 10,965

Clustered Standard Errors.
***p < 0.01, **p < 0.05, *p < 0.1.

9 The model estimates two separate equations, one for the data-generating process
of the zeros and another for the positive counts. The inflation equation is a logistic
model for 0s, the other model is a negative binomial. So the two equations
are: = = +it Y γ Zlog (Pr( 0)) interceptit it1 , > = + +NB β X β W(Pr(Y 0)) exp (intercept )it itit 1 2 ,
Where Zit are covariates for inflation stage (only density in this case), Xit is a vector
of the main independent variables (Table 1) andWit are the set of control variables.

10 Recall that the inflate equation predicts the likelihood of 0s.
11 Software for Near-Repeat analysis: http://www.cla.temple.edu/cj/misc/nr/.
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chains (> 10 attacks) are in the Gulf of Aden, close to the straits. Here,
the conjunction of favourable geographic conditions probably allows
pirates to attack multiple targets in a short amount of time (one day
interval).

In sum, results in Table 2 reveal that piracy spreads in space, also to
previously immune locations. This contagion is driven not only by
spatial contiguity but also by a learning process through which pirates
update their belief about successful areas. The same argument holds for
reinforcement, that is to say, the expectation that pirates return to lo-
cations they are familiar with.

Now, I assess the effect of EU counterpiracy in terms of deterrence
and compellence (H2a and H2b). The deployment of EU warships for
the Atalanta mission should alter pirates' decision-making and contain
the contagion of piracy. Model 4 (Table 4) tests the effect of EUNAV-
FOR deployment on the intensity of piracy activity using year dummies
that equals 1 for years after 2008. Model 4 reveals that the deterrent
effect only started in 2012, with a 49% reduction of monthly attacks
and became even stronger afterwards, with an 88% decrease in 2013
(Table 3). Piracy activity off Somalia did not drop immediately after the
deployment, but the mission became a more effective deterrent later.
Indeed, in 2012 EUNAVFOR was allowed to expand its operations to
Somali territorial waters and coastline and established cooperation with
the Somali Transnational Federal Government (European Council,
2012). In May 2012, EUNAVFOR conducted its first raid against a pi-
rates' base on Somalia's coast, during which boats and weapons were
completely destroyed (BBC News, 2012). Models with one single
dummy variable for Atalanta mission (not shown) do not capture this
gradual improvement and report a positive coefficient. Furthermore,
the implementation of BMP and use of on-board private security does
not significantly reduce attacks, while more likely reduce their success.

Moving to compellence, I test the effect of EU rescue operations on
pirates' strategic selection of locations. More specifically, I measure
whether pirates faced EUNAVFOR in a location in the previous month
to test the compellence effect. Disrupting attacks does not simply
threaten, but actually imposes costs on pirates. Since the strategic in-
teraction between pirates' activity and EU intervention is endogenous, I
use a seemingly unrelated regression (SUR) to test the hypothesis. The
SUR model estimates two separate equations allowing correlation be-
tween disturbances. To ensure consistency with the main model pre-
sented earlier (ZINB, model 3) the two seemingly unrelated models are
a ZINB and a logit model. I expect the intensity of piracy to be related to
EU activity in given units in the last month; hence I use the ZINB with
the number of attacks as the dependent variable and previous EUNA-
VFOR rescue interventions as the independent variable. At the same
time, EU interventions are a function of piracy actually occurring,
which is why the logit model uses a dummy for EUNAVFOR interven-
tion in the previous month as the dependent variable, and the previous
number of attacks and success rate as covariates. I interact success rates
and EU rescues in the ZINB equation because compellence can be
conditional on learning. If pirates attack a vessel in a cell that has 100%
failure rate, they are less likely to return to the location independently
from EUNAVFOR intervention. A compellence effect occurs when suc-
cessful areas become dangerous for pirates because of EU disruption.
Indeed, models without the interaction term report no significant effect
of intervention on future piracy incidents (not shown).

The results are reported in Model 5 (Table 4). The logit estimation
shows that interventions are strongly and positively related to piracy
activity not only in a specific unit but also in its proximity. Also rates of
success in the location increase the probability of EU intervention,
suggesting a learning effect also for counterpiracy operations. Focusing
on the ZINB model, it is interesting to see that the disruption of attacks
by EUNAVFOR reduces piracy incidence and discourages attacks even
when the success rate is high. As reported in Table 3, when success rate
is at its maximum, piracy is reduced by 89% by EU intervention.
However, this compellence only lasts for one month. It disappears after
2months as reported by the lags for rescue operations carried out at t-2
and t-3. Eventually, pirates go back to that location. This short-term
effect has two main reasons. On the one hand, we know from the logit
equation of the SUR estimation that EUNAVFOR intervenes more in
areas where more successful attacks occurred. On the other hand, this
intervention is not followed or complemented by constant patrolling of
these areas. After the rescue of vessels, warships move away. Thus, it is

Table 3
Incident rate ratio (Model 3, 4 and 5).

Mechanism Variable IRR % Change Piracy

Reinforcement Count ( −t 1) 3.111 +211%
Contiguity Count (Space lag) 2.530 +152%
Learning Rate of Success ( −t 1) (Space lag) 1.049 +61%

Rate of Success ( −t 1) 1.009 +10%
Deterrence Atalanta2011 1.3 +30%

Atalanta2012 0.507 −49%
Atalanta2013 0.123 −88%

Compellence Success(max)*Rescue ( −t 1) 0.51 −89%

Fig. 3. Predicted Probability of Piracy after piracy in nearby cells.

Fig. 4. Predicted Probability of Piracy after successful piracy in nearby cells.
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possible that pirates wait approximately one month, according to my
analysis, and then again return to these areas because of their high
success rates.

The predicted effect of the interaction between success rates and EU
intervention is plotted in Fig. 6. Very interestingly, success increases
likelihood of contagion only when attacks did not trigger EU rescue
(solid line). Indeed, the risk of attacks increases from almost 2% to
more than 10% when most previous attacks were successful and the EU

did not disrupt them. Conversely, EUNAVFOR interventions decrease
probability of piracy spreading to new locations regardless of success
rates. The dashed line in Fig. 6 is indicating that pirates are less likely to
operate in locations where their success led to EU intervention, even
less so when they were very successful. A plausible explanation for this
is that more effective piracy attacks attract much more attention and
robust military deployment, thus posing significant constraints on pi-
rates' capacity to operate in such areas in the following month.

Fig. 5. Location of incidents occurring within near repeat chains.
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Robustness and model fit

How much does the inclusion of contagion and counter-contagion
variables improve predictive performances of a model of piracy risk?

Fig. 7 plots the Receiver-Operating Characteristic (ROC) curves that
compare the in-sample predictions of three different piracy models. The
larger the area under the curve (AUC), the higher the model's predictive
power. The blue curve refers to a model that only includes what I re-
ferred to as contextual factors, namely all covariates except variables
related to contagion and counter-contagion, as listed in Table 1. The red
curve refers to a model that includes variables measuring contagion by
contiguity and learning. Finally, the green curve refers to the full model
where both contagion and counter-contagion variables are included. As
indicated in the Figure, the contagion model already improves the
prediction of a simple model where spatial interdependences are not
accounted for, moving the AUC from 82% to 84%. Furthermore, the
largest improvement on predictive power results from the inclusion of
counter-contagion factors, which contributes to a 10-point increase in
the AUC (94%). Since this is the first study using such spatially and
temporally fine-grained data, there is no existing model against which I
can compare these ROC curves. The only available in-sample prediction
exercise is provided by Daxecker and Prins (2015). Using country-year
as unit of analysis, their model for all piracy incidents has an AUC of
92%. While differences in the unit of analysis and geographical scale
make these results not fully comparable, this still suggests that con-
sidering contagion and counter-contagion factors increases the in-
sample fit of risk models of piracy. In addition to this, I map the pre-
dicted risk of piracy in the Appendix (Fig. AI) to show that the esti-
mated geographic patterns of risk are more similar to the observed
geography of attacks in the counter-contagion model. Taken together,
the risk maps in Appendix and the ROC curves corroborate the claim
that predictions on pirates' behaviour do improve when models account
for both factors that boost and contain the spatial spread of piracy.

In the Appendix, I present additional empirical results to assess the
robustness of my findings. First, I did not include month or grid cell
fixed effects in the main model because the ZINB already captures some
heterogeneity. Indeed, the standard estimation of a ZINB model in Stata
does not allow the use of fixed effects. In Table AI (Appendix) however,
I show consistent results of a ZINB model with the inclusion of month
fixed effects. Table AII shows the estimates of separate ZINB models for
the contagion variables, and results are comparable to the main model
presented in the manuscript. In addition, Table AIII reports results using
the leads for the main independent variables, namely contiguity and
learning. The lead of reinforcement is simply the dependent variable,
since reinforcement is its time lag so it is obviously not included. If
contagion is occurring, then the lead of the covariates driving contagion
would have no significant effect on the number of incidents. Con-
sistently, I find that leads are not significantly associated with piracy

Table 4
ZINB and SUR models for counter-contagion.

Variables Model (4) Model (5)

ZINB SUR Rescue

Atalanta ZINB+ Logit

Reinforcement 1.210*** 0.601** 4.696***
(0.335) (0.286) (0.657)

Contiguity ( −t 1) 0.805*** 0.902***
(0.108) (0.120)

Contiguity 0.0193 0.403***
(0.121) (0.0821)

Rate of Success ( −t 1) 1.128 3.901*** 17.65***
(0.759) (1.049) (1.560)

Rate of Success ( −t 1) (Space Lag) 4.496***
(1.445)

Atalanta2010 0.214
(0.141)

Atalanta2011 0.261**
(0.118)

Atalanta2012 −0.680***
(0.160)

Atalanta2013 −2.098***
(0.261)

Success ( −t 1)*Rescue ( −t 1) −7.331***
(2.180)

Rescue ( −t 1) 2.600
(0.946)

Rescue ( −t 2) 1.623***
(0.221)

Rescue ( −t 3) 1.535***
(0.202)

BMP −0.0420 −0.152
(0.282) (0.391)

Private Security −0.122 0.124
(0.365) (0.576)

Constant −2.887*** −5.034*** −8.761***
(0.800) (0.749) (0.405)

Observations 177,840 177,840 177,840

Other control variables are included in the estimation.
Clustered standard errors.
***p < 0.01, **p < 0.05, *p < 0.1.
+Inflation stage with Density (***) not reported.

Fig. 6. Predicted Probability of Piracy after EUNAVFOR intervention against
successful attacks.

Fig. 7. Receiver-Operating Characteristic Curves for piracy attacks
(2005–2013).
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attacks. The Appendix also includes robustness tests using only suc-
cessful piracy attacks (Table AIV), models specification with a dummy
variable for the grid-cells within the Internationally Recommended
Transit Corridor (IRTC) just outside the Gulf of Aden (Table AV),
models with quarterly aggregated data (Table AVI) and finally models
with four-month lags of the independent variables. The last two tables
in particular aim at providing support to the expectation that pirates do
return to some locations and their surroundings months after the suc-
cessful attacks and the identified contagion patterns are not only the
results of a single campaign. Finally, Table A VIII reports the result of a
Markov-Chain logit model to provide a more conservative test of the
contagion process. The model shows that the probability that pre-
viously safe locations experience piracy is higher when nearby suc-
cessful attacks are perpetrated, while contiguity affects both the like-
lihood of spread in nearby cells and re-occurrence of piracy in the same
cell.

Discussion and conclusions

It could be argued that contagion at sea is more challenging to
identify compared to land-based contagion because socio-economic and
environmental drivers of the phenomenon are not present on water.
This claim seems to misunderstand contagion. First, if socio-economic
and environmental features are sufficient for explaining the spatial and
temporal clustering of events, clustering is very likely the result of the
initial spatial distribution of these features rather than an inter-
dependent process of contagion. This is the difference between spatial
interdependence and common exposure. Second, pirates are very land-
based actors and carefully select locations to sail from. For example,
they seek local tribes' protection and relatively secure ports. Hence, the
decision of where to sail from and to is not independent from land-
based conditions. In other words, piracy occurs at sea but it is not a
uniquely and purely maritime activity.

Another important points concern how confident we can be on
mechanisms behind contagion of piracy and other forms of violence and
crime. Violence during civil wars spreads because actors attempt to
establish control over contested areas. Starting from their home base,
each party uses violence in surrounding areas whenever necessary to
gain relevant territories. In the case of sea-based crime, however, is it
possible to identify the origin of the contagion? Pirates have to move on
water to commit attacks and each time they try to identify areas sui-
table for attacks. Possibly, they go back to the last location they oper-
ated within and then move to its immediate surroundings. Given the
availability of GPS and other technologies, pirates have at least the
opportunity to do so. While conflicts escalate or relocate from a point of
origin, piracy has no fixed beginning point. For contagion patterns to
emerge, it is necessary that pirates decide to go in a location to start
their campaigns. If they simply hunt specific targets, this behaviour
would not result in spatio-temporal clustering. Once the campaign ends
or at least one attack is carried out, pirates have to go back to shores
again. Then, when a new campaign starts, they may decide to go back
to already areas that are known and ‘successful’. In this sense, the dy-
namics of Bayesian learning that are used to explain behaviours of other
violent actors (terrorist or rebel groups), is particularly explicit and
strategic in pirates' decision-making. The fact that these actors carry out
their attacks at sea simply facilitates the isolation of such mechanisms
that are more difficult to disentangle in land-based phenomenon. The

problem of many confounders and common exposure, while still of
some relevance, should be less severe for the inferences made here.

Moving from existing work on contagion of political and criminal
violence, the analysis presented here shows that violent actors strate-
gically select location for violence and adapt their decision-making
according to learning and counter-violence factors. Using the case of
Somali maritime piracy as strict test of such claims, I show that, along
with contextual factors that increase the profitability and attractiveness
of piracy (economic opportunities, instability, geography and weather),
pirates base their decision making on three important factors that ex-
plain why piracy exhibits pattern of spatial interdependence. This
pattern can be described as outbursts of activity followed by a con-
tagious period, which is limited in time (within one month) and space
(within 250 km). After this period, the contagion in the area stops.
Additionally, successes may drive pirates to return to locations where
they failed less. Interestingly, the learning process does not exclude the
possibility that those who recognize the advantages of operating in a
location are the same who achieved the first success. Practices, which
also involve ways of carrying out attacks, may diffuse “in virtue of the
signal they send” (Gilardi, 2016), rate of success in this case. Un-
fortunately, the data available does not allow distinguishing among
groups and identifying contagion processes due to observational
learning.

The identification of the sources of clustering has crucial implica-
tions for counter-piracy policy. Counter-crime interventions usually
refer to hotspot maps to identify areas considered to be at risk.
However, a static map of hotspot may result in misinformed strategies.
Indeed, not all hotspots are constant over time and it is easy to mis-
interpret a temporary high concentration of piracy with a stable hotspot
(Johnson & Bowers, 2004; Johnson, Lab, & Bowers, 2008). The near-
repeat analysis, for example, has shown that an “originator” event may
start a chain of correlated attacks only because of event-dependency
and contagion. This means that a hotspot may be the result of an oc-
casional outburst of activity following a precipitating event but this
does not imply that the areas is always at high risk of piracy. In such
instances, constant patrolling by navy forces (as in the transit corridor)
is not efficient, whereas rapid interventions to disrupt activities are
more appropriate. Stable hotspots, on the other hand, record high in-
tensity of piracy over time, not just occasionally. This is due not to
contagion but to location characteristics that are particularly favour-
able for piracy. Such hotspots are localized around the Gulf of Aden and
Northern Somali coast, where concentration of piracy is reported
throughout the whole 2005–2013 period. Hence, the distinction be-
tween risk heterogeneity and contagion made in this article is extremely
policy-relevant and necessary to properly inform intervention strate-
gies. Understanding the determinants of piracy clustering in specific
locations is central for planning appropriate counter-piracy strategies as
it would allow to distinguish between areas that needs to be constantly
patrolled and those where the risk of attack is temporarily heightened
for a limited period.
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Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.polgeo.2018.07.004.

Appendix

Table AI
ZINB with Month Fixed Effects

Variables Model with Month Fixed-Effects

ZINB Inflation stage

Reinforcement 1.182***
(0.317)

Contiguity (t-1) 1.941***
(0.707)

Contiguity 0.563***
(0.0786)

Rate of Success ( −t 1) 0.975***
(0.110)

Density 0.0244** −1.633***
(0.0121) (0.417)

Density (sq) −0.000260**
(0.000103)

Distance port −0.191***
(0.0388)

Distance port (sq) 0.000756
(0.00153)

Distance chokepoint 0.000367
(0.000294)

Killed 5.361***
(0.924)

Killed (sq) −2.618***
(0.459)

Constant −5.165*** 0.604***
(0.250) (0.210)

Clustered standard errors.
***p < 0.01, **p < 0.05, *p < 0.1.

Table AII
ZINB Models with Diffusion variables separately

Variables (1) (2) (3) (4) (5) (6)

Reinforcement only Inflation stage Contagion only Inflation stage Learning only Inflation stage

Density 0.0286** −1.626*** 0.0273** −1.612*** 0.0270** −1.556***
(0.0122) (0.428) (0.0136) (0.458) (0.0121) (0.450)

Density (sq) −0.000338* −0.000279** −0.000317*
(0.000183) (0.000109) (0.000167)

Distance port −0.218*** −0.201*** −0.222***
(0.0378) (0.0432) (0.0382)

Distance port (sq) 0.00219 0.000914 0.00245
(0.00151) (0.00161) (0.00151)

Summer Monsoon −0.607*** −0.575*** −0.547***
(0.115) (0.123) (0.123)

Distance chokepoint 0.000256 0.000393 0.000258
(0.000279) (0.000339) (0.000285)

Killed 3.948*** 3.112*** 3.778***
(0.571) (0.632) (0.607)

Killed (sq) −1.904*** −1.492*** −1.818***
(0.284) (0.314) (0.302)

(continued on next page)
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Table AII (continued)

Variables (1) (2) (3) (4) (5) (6)

Reinforcement only Inflation stage Contagion only Inflation stage Learning only Inflation stage

Contiguity 1.216***
(0.109)

Contiguity −(t 1) 0.832***
(0.0786)

Reinforcement 2.481***
(0.137)

Rate of Success ( −t 1) 5.870***
(0.282)

Constant −4.791*** 0.797*** −5.113*** 0.619*** −4.788*** 0.819***
(0.209) (0.205) (0.263) (0.215) (0.217) (0.198)

Lnalpha 1.835*** 2.171*** 1.785***
(0.195) (0.210) (0.268)

Observations 320,112 320,112 320,112 320,112 320,112 320,112

Clustered standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.

Table AIII
ZINB with main IVs' lags and leads.

Variables ZINB Inflation stage

Reinforcement 0.505***
(0.148)

Contiguity −0.0948
(0.0915)

Contiguity (t-1) 0.0546
(0.0702)

Rate of Success ( −t 1.) 15.71***
(0.558)

Rate of Success (t+1) 0.532
(0.387)

Contiguity (t+1) −0.0665
(0.0430)

Density 0.000183 −1.432***
(0.00932) (0.125)

Density (sq) −0.000132
(0.000210)

Distance port −0.0413***
(0.0154)

Distance port (sq) 0.00114*
(0.000659)

Distance chokepoint −0.0951
(0.139)

Summer Monsoon −2.21e-05
(9.81e-05)

Killed −8.044
(6.440)

Killed (sq) 3.956
(3.170)

Constant −7.013*** −17.13***
(0.615) (0.114)

Clustered standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.
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Table AIV
ZINB Models with Successful Piracy Attacks only

Variables (1) (2) (3) (4)

Successful attacks Inflation stage Successful attacks Inflation stage

Density 0.0312 −2.339*** 0.0334 −2.370***
(0.0244) (0.580) (0.0241) (0.577)

Density (sq) −0.000198 −0.000221
(0.000156) (0.000154)

Distance port −0.313*** −0.308***
(0.0626) (0.0632)

Distance port (sq) 0.00182 0.00177
(0.00257) (0.00257)

Summer Monsoon −0.733*** −0.757***
(0.171) (0.172)

Distance chokepoint 0.00128*** 0.00120**
(0.000492) (0.000498)

Killed 2.536* 2.561*
(1.317) (1.373)

Killed (sq) −1.245* −1.254*
(0.655) (0.683)

Reinforcement 0.618** 2.418***
(0.281) (0.350)

Rate of Success ( −t 1) 4.651***
(0.510)

Contiguity ( −t 1) 0.538*** 0.813***
(0.126) (0.191)

Contiguity 0.910*** 1.047***
(0.123) (0.156)

Constant −6.537*** 0.989*** −6.489*** 0.963***
(0.398) (0.339) (0.380) (0.346)

Lnalpha 2.324*** 2.855***
(0.442) (0.499)

Observations 320,112 320,112 320,112 320,112

Clustered standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.

Table AV
ZINB Models with Transition Corridor dummy

Variables (1) (2) (4) (5)

Corridor Diffusion Inflation stage Corridor Counter-diffusion Inflation stage

Density 0.0180 −1.668*** 0.00679 −1.478***
(0.0140) (0.400) (0.0116) (0.420)

Density (sq) −0.000175** −0.000156
(7.82e-05) (0.000108)

Distance port −0.186*** −0.0839**
(0.0398) (0.0359)

Distance port (sq) 0.000343 −0.00232
(0.00158) (0.00178)

Summer Monsoon −0.542*** −0.858***
(0.116) (0.163)

Distance chokepoint 0.000440 0.000299
(0.000308) (0.000226)

Killed 2.779*** 12.26
(0.770) (7.727)

Killed (sq) −1.437*** −6.096
(0.385) (3.801)

Reinforcement 1.153*** 1.641***
(0.313) (0.371)

(continued on next page)
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Table AV (continued)

Variables (1) (2) (4) (5)

Corridor Diffusion Inflation stage Corridor Counter-diffusion Inflation stage

Rate of Success ( −t 1) 1.803*** 1.409
(0.689) (0.987)

Contiguity ( −t 1) 0.497*** 0.368***
(0.0750) (0.0812)

Contiguity 0.969*** 0.850***
(0.119) (0.131)

IRTC 0.853*** 1.009***
(0.207) (0.249)

Rescue ( −t 1) −1.031**
(0.476)

Rescue ( −t 2) 1.429***
(0.264)

Rescue ( −t 3) 1.369***
(0.218)

Atlanta 1.006***
(0.268)

Constant −5.234*** 0.577*** −5.262*** 0.573***
(0.255) (0.215) (0.747) (0.212)

1.356***
Lnalpha 1.595*** (0.319)

(0.220)
Observations 320,112 320,112 177,840 177,840

Clustered standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.

Table AVI
ZINB Models with data aggregated by quarter.

Variables (1) (2) (3) (4)

Quarterly Diffusion Inflation stage Quarterly Counterdiffusion Inflation stage

Density 0.0311*** −2.722*** 0.0324*** −1.925***
(0.00970) (0.369) (0.0105) (0.262)

Density (sq) −0.000526** −0.000524**
(0.000214) (0.000214)

Distance port −0.0881*** −0.0784***
(0.0224) (0.0238)

Distance port (sq) −0.000520 −0.000931
(0.00109) (0.00120)

Summer Monsoon −0.360*** −0.263***
(0.0840) (0.0840)

Distance chokepoint 0.000125 2.67e-05
(0.000118) (0.000127)

Killed 0.153*** 0.211***
(0.0300) (0.0313)

Killed (sq) −0.00789*** −0.0104***
(0.00208) (0.00198)

Reinforcement 0.830** 1.091***
(0.386) (0.337)

Rate of Success ( −t 1) 23.62*** 24.36***
(2.299) (2.013)

Contiguity ( −t 1) −1.059** −0.926**
(0.448) (0.430)

Contiguity 1.202** 1.104**
(0.479) (0.456)

(continued on next page)
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Table AVI (continued)

Variables (1) (2) (3) (4)

Quarterly Diffusion Inflation stage Quarterly Counterdiffusion Inflation stage

Rescue ( −t 1) −0.295
(0.247)

Rescue −t( 2) −0.0886
(0.131)

Rescue ( −t 3) −1.509***
(0.248)

Constant −5.585*** −17.65*** −5.764*** −16.97***
(0.141) (0.252) (0.163) (0.222)

Lnalpha 0.248** 0.104
(0.0974) (0.0927)

Observations 106,704 106,704 106,704 106,704

Clustered standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.

Table AVII
ZINB Models with Diffusion covariates at 4 months lag

Variables (1) (2)

4Months
Lag

Inflation Stage

Density 0.0246** −1.589***
(0.0114) (0.421)

Density (sq) −0.000294*
(0.000152)

Distance port −0.202***
(0.0385)

Distance port (sq) 0.00156
(0.00153)

Summer Monsoon −0.609***
(0.134)

Distance chokepoint 0.000289
(0.000275)

Killed 3.576***
(0.559)

Killed (sq) −1.733***
(0.279)

Reinforcement −t( 4) 1.527***
(0.207)

Rate of Success −t( 4) 3.230***
(0.482)

Contiguity ( −t 5) 0.544***
(0.0872)

Contiguity −t( 4) 0.526***
(0.0809)

Constant −4.835*** 0.723***
(0.218) (0.199)

Lnalpha 2.106***
(0.227)

Observations 308,256 308,256

Clustered standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.
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Markov-Chain Logit

The first column in Table A VIII shows the likelihood that piracy will occur in a locations that has not experiences piracy at t-1, in other words it
tests the spread of piracy to new locations. Column two in Table A VIII shows the likelihood that piracy will occur again in locations that experienced
attacks at t-1, thus testing the likelihood of repeated activity in a cell-month. First thing to highlight is that the spatial lags of piracy behave similarly
in both models, indicating that cells contiguous to attacked locations are more likely to experience both diffusion and re-occurrence of piracy; to put
it otherwise, they are at risk regardless of whether they have already experienced piracy in the previous month. However, it is noteworthy that
previous successes lead to higher likelihood of spread to new, surrounding locations but lower likelihood of re-occurrence in previously targeted
areas. This result is statistically significant only at 0.1 level, but it points out that successes also bear costs in terms of attracting EU counter-piracy
attention. When pirates successfully board or hijack a vessel, they may prompt EU reaction and, in turn, are forced to move away from these areas.
This means that success will reduce chances of repeated attacks in the following month, but increase odds of attacks in surrounding areas. Differently
from the learning mechanisms, contiguity does not tell us about the success of attacks, which explains why occurrence of attacks in surrounding areas
can still lead to both spread and reoccurrence as attempted attacks are less likely to draw attention and being reported.

While testing spread of piracy as a Markovian process may provide a more conservative test for the diffusion hypothesis, the underlying assumptions of
Markov-Chain logit models may pose too many restrictions on the data generating process. For example, the Markovian logit assumes that all units have a
probability of transitioning from no-piracy to piracy greater than 0, so it is not possible to account for the zeros inflation. Also the stationarity of the
transition probabilities is debatable if we consider seasonal variation and, probably more important, the deployment of the EU navy as a structural shock.

Table AVIII
Markov-Chain logit models.

Variables Transition from No Piracy → Piracy Transition from Piracy → Piracy

Diffusion of Piracy Recurrence of Piracy

Rate of Success −t( 1) 6.815** −3.921*
(3.820) (1.725)

Contiguity −t( 1) 0.448*** 0.454***
(0.0717) (0.165)

Contiguity 0.791*** 0.743***
(0.0931) (0.161)

Density 0.0770*** 0.0737*
(0.0159) (0.0426)

Density (sq) −0.00102** −0.000927
(0.000472) (0.000797)

Distance port −0.173*** −0.139
(0.0364) (0.158)

Distance port (sq) 0.000775 0.000550
(0.00152) (0.00888)

Distance chokepoint 0.000291 0.000646
(0.000264) (0.000689)

Killed 2.434*** 4.919**
(0.702) (2.366)

Killed (sq) −1.148*** −2.529**
(0.349) (1.177)

Summer Monsoon −0.698*** −0.146
(0.113) (0.313)

Constant −5.838*** −1.068
(0.195) (0.925)

Observations 319,245 867

Clustered standard errors in parentheses.
***p < 0.01, **p < 0.05, *p < 0.1.

Predicted geography of piracy risk

It is also useful to look at how the risk of piracy varies in space, compared to where actual attacks occurs. Given the high number of units in the
sample, it is difficult to compare predictions for each location over time. Alternatively, I present the average risk of piracy as estimated in the main
models for the manuscript, namely the ZINB with diffusion variables and the ZINB with both diffusion and counter-diffusion variables. These are the
same models whose ROC curves are compared at the end of the article. Fig. AI compares the risk of piracy as predicted by the diffusion-only model
(left panel) and by the counter-diffusion model (right panel) with the actual density of piracy incidents shown in the manuscript (central panel) for
the year 2005–2013. Both right and left panels show similar geographic patterns, although the right-hand map that includes EU counter-piracy
efforts seems to be more precise at identifying high risk areas (darker red shades), which in turns provide a more accurate prediction compared to the
actual risk areas. For example, according to the diffusion-only predictions, the whole Somali coastline is predicted to have extremely high risk of
piracy also in areas where very few incidents occurred (e.g. north-west Somali basin). Accounting for factors that have reduced the incidence of
piracy in some areas, however, only identifies few hotspots along the Somali coast, and even fewer within the Somali basin.
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Fig. A1. Average probability of piracy attacks by grid-cell.1
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